Application of a Physiologically Based Pharmacokinetic Model to Predict OATP1B1-Related Variability in Pharmacodynamics of Rosuvastatin
نویسندگان
چکیده
Typically, pharmacokinetic-pharmacodynamic (PK/PD) models use plasma concentration as the input that drives the PD model. However, interindividual variability in uptake transporter activity can lead to variable drug concentrations in plasma without discernible impact on the effect site organ concentration. A physiologically based PK/PD model for rosuvastatin was developed that linked the predicted liver concentration to the PD response model. The model was then applied to predict the effect of genotype-dependent uptake by the organic anion-transporting polypeptide 1B1 (OATP1B1) transporter on the pharmacological response. The area under the plasma concentration-time curve (AUC0-∞) was increased by 63 and 111% for the c.521TC and c.521CC genotypes vs. the c.521TT genotype, while the PD response remained relatively unchanged (3.1 and 5.8% reduction). Using local concentration at the effect site to drive the PD response enabled us to explain the observed disconnect between the effect of the OATP1B1 c521T>C polymorphism on rosuvastatin plasma concentration and the cholesterol synthesis response.
منابع مشابه
Toward Prospective Prediction of Pharmacokinetics in OATP1B1 Genetic Variant Populations
Physiologically based pharmacokinetic (PBPK) models are increasingly being used to provide human pharmacokinetic (PK) predictions for organic anion-transporting polypeptide (OATP) substrates based on in vitro assay data. As a natural extension in the application of these models, in this study, we incorporated in vitro information of three major OATP1B1 genetic variants into a previously reporte...
متن کاملExplaining Ethnic Variability of Transporter Substrate Pharmacokinetics in Healthy Asian and Caucasian Subjects with Allele Frequencies of OATP1B1 and BCRP: A Mechanistic Modeling Analysis
BACKGROUND Ethnic variability in the pharmacokinetics of organic anion transporting polypeptide (OATP) 1B1 substrates has been observed, but its basis is unclear. A previous study hypothesizes that, without applying an intrinsic ethnic variability in transporter activity, allele frequencies of transporters cannot explain observed ethnic variability in pharmacokinetics. However, this hypothesis ...
متن کاملDmd054767 726..734
Eltrombopag (ELT), an orally available thrombopoietin receptor agonist, is a substrate of organic anion transporting polypeptide 1B1 (OATP1B1), and coadministration of ELT increases the plasma concentration of rosuvastatin in humans. Since the pharmacokinetic mechanism(s) of the interaction is unknown, the present study aimed to clarify the drug interaction potential of ELT at transporters. The...
متن کاملInvestigating Transporter‐Mediated Drug‐Drug Interactions Using a Physiologically Based Pharmacokinetic Model of Rosuvastatin
Rosuvastatin is a frequently used probe in transporter-mediated drug-drug interaction (DDI) studies. This report describes the development of a physiologically based pharmacokinetic (PBPK) model of rosuvastatin for prediction of pharmacokinetic (PK) DDIs. The rosuvastatin model predicted the observed single (i.v. and oral) and multiple dose PK profiles, as well as the impact of coadministration...
متن کاملMore Power to OATP1B1: An Evaluation of Sample Size in Pharmacogenetic Studies Using a Rosuvastatin PBPK Model for Intestinal, Hepatic, and Renal Transporter‐Mediated Clearances
Rosuvastatin is a substrate of choice in clinical studies of organic anion-transporting polypeptide (OATP)1B1- and OATP1B3-associated drug interactions; thus, understanding the effect of OATP1B1 polymorphisms on the pharmacokinetics of rosuvastatin is crucial. Here, physiologically based pharmacokinetic (PBPK) modeling was coupled with a power calculation algorithm to evaluate the influence of ...
متن کامل